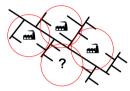

Very Fast Streaming Submodular Function Maximization

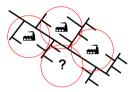
Sebastian Buschjäger, Philipp Jan-Honysz, Lukas Pfahler, and Katharina Morik 13th - 17th September 2021

TU Dortmund University - Artifical Intelligence Group 🔊 - Collaborative Research Center 876 🧐



(a) Facility location / coverage

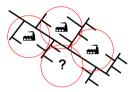
Submodular Function Maximization



(a) Facility location / coverage


```
(b) Summarization
```


(a) Facility location / coverage



(b) Summarization

(c) Determinantal Point Processes

(a) Facility location / coverage

(b) Summarization

(c) Determinantal Point Processes

$$\max_{S\subseteq V, |S|\leq K} f(S)$$

where $f: 2^V \to \mathbb{R}_{\geq 0}$ is a submodular set function

Gain Let $f: V \to \mathbb{R}$ and let $e \in V$ and $S \subseteq V$:

 $\Delta_f(e|S) = f(S \cup \{e\}) - f(S)$

Gain Let $f: V \to \mathbb{R}$ and let $e \in V$ and $S \subseteq V$:

 $\Delta_f(e|S) = f(S \cup \{e\}) - f(S)$

Submodularity f is submodular iff for all $A \subseteq B \subseteq V$ and $e \in V \setminus B$ it holds that

 $\Delta_f(e|A) \geq \Delta_f(e|B)$

Gain Let $f: V \to \mathbb{R}$ and let $e \in V$ and $S \subseteq V$:

 $\Delta_f(e|S) = f(S \cup \{e\}) - f(S)$

Submodularity f is submodular iff for all $A \subseteq B \subseteq V$ and $e \in V \setminus B$ it holds that

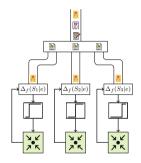
 $\Delta_f(e|A) \geq \Delta_f(e|B)$

Example

 $\Delta_f(\blacksquare|\{\textcircled{D}, \fbox{F}\}) \geq \Delta_f(\blacksquare|\{\textcircled{D}, \fbox{F}\})$

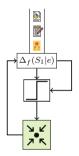
Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1 / \exp(1)$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}(K)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}(K)$	$\mathcal{O}(K)$	\checkmark	[4]
IndependentSetImprovement	1/4	$\mathcal{O}(K)$	$\mathcal{O}(1)$	\checkmark	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	\checkmark	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$\mathcal{O}(K/\varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	\checkmark	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	(√)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK \log K \log (1/\varepsilon))$	$\mathcal{O}(\lceil 1/c \rceil + c)$	1	[18]
ThreeSieves	$(1-\varepsilon)(1-1/\exp(1))$ with prob. $(1-\alpha)^K$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	\checkmark	this paper

Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1/\exp(1)$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}(K)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(K)$	\checkmark	[4]
IndependentSetImprovement	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(1)$	\checkmark	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	\checkmark	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$\mathcal{O}(K/\varepsilon)$	$\mathcal{O}(\log K/arepsilon)$	\checkmark	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/arepsilon)$	(√)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK \log K \log (1/\varepsilon))$	$\mathcal{O}(\lceil 1/c \rceil + c)$	\checkmark	[18]
ThreeSieves	$(1-\varepsilon)(1-1/\exp(1))$ with prob. $(1-\alpha)^K$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	\checkmark	this paper



Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1 / \exp(1)$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}(K)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(K)$	\checkmark	[4]
IndependentSetImprovement	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(1)$	\checkmark	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	√	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$\mathcal{O}(K/arepsilon)$	$\mathcal{O}(\log K/arepsilon)$	\checkmark	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/arepsilon)$	(√)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK\log K\log(1/\varepsilon))$	$\mathcal{O}(\lceil 1/c \rceil + c)$	\checkmark	[18]
ThreeSieves	$(1-\varepsilon)(1-1/\exp(1))$ with prob. $(1-\alpha)^K$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	\checkmark	this paper

Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1 / \exp(1)$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}(K)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(K)$	\checkmark	[4]
IndependentSetImprovement	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(1)$	\checkmark	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	\checkmark	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$\mathcal{O}(K/arepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	\checkmark	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K\log K/arepsilon)$	$\mathcal{O}(\log K/\varepsilon)$	(\checkmark)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK\log K\log(1/\varepsilon))$	$\mathcal{O}(\lceil 1/c \rceil + c)$	\checkmark	[18]
ThreeSieves	$(1-\varepsilon)(1-1/\exp(1))$ with prob. $(1-\alpha)^K$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	~	this paper



(a) Sieve Streaming

- Add if $\Delta_f(e|S_i) \ge v_i$
- Use $v_i \in O = \{(1 + \varepsilon)^i \mid i \in \mathbb{Z}, m \leq (1 + \varepsilon)^i \leq K \cdot m\}$
- Maintain multiple summaries and thresholds
- Memory: $O(K \log K / \varepsilon)$
- Solution: $f(S) \ge (1/2 \varepsilon)f(OPT)$

(a) Three Sieves

- Add if $\Delta_f(e|S) \ge v$
- Start with a large $v_i \in O$ and gradually decrease it
- Maintain a single summary and threshold
- Memory: O(K)
- Solution: $f(S) \ge (1 \varepsilon)(1 1/\exp(1))$ with prob. $(1 \alpha)^K$

1) $\Delta_f(e|S) \geq v$

Add *e* to the summary and continue with large threshold.

2) $\Delta_f(e|S) < v$ Do not add e. Would a smaller v have been better?

1) $\Delta_f(e|S) \ge v$ Add e to the summary and continue with large threshold.

2) $\Delta_f(e|S) < v$ Do not add e. Would a smaller v have been better?

Differently put What is the probability p(e|f, S, v) to find an item e in the future that exceeds v?

1) $\Delta_f(e|S) \ge v$ Add e to the summary and continue with large threshold.

2) $\Delta_f(e|S) < v$ Do not add e. Would a smaller v have been better?

Differently put What is the probability p(e|f, S, v) to find an item e in the future that exceeds v?

Basic idea Estimate p(e|f, S, v) on the fly and lower threshold once its unlikely to be out-valued

But *p* is estimated from data and has its own confidence.

But p is estimated from data and has its own confidence.

1) $\Delta_f(e|S) \ge v$ Add e to the summary and S changes. Start new estimation of p(e|f, S, v)

2) $\Delta_f(e|S) < v$ Do not add e and update estimate of p(e|f, S, v).

But p is estimated from data and has its own confidence.

1) $\Delta_f(e|S) \ge v$ Add e to the summary and S changes. Start new estimation of p(e|f, S, v)

2) $\Delta_f(e|S) < v$ Do not add e and update estimate of p(e|f, S, v).

We only observe rejections for *p*

The Rule of Three and Three Sieves

Rule of Three The $\alpha = 0.95$ - confidence interval of p after T negative and no positive coin flips is

$$p \in \left[0, \frac{3}{T}\right]$$

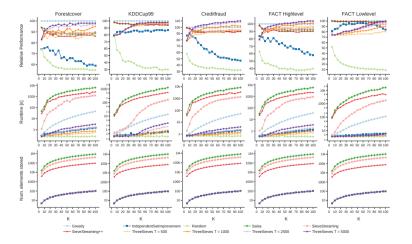
Rule of Three The $\alpha = 0.95$ - confidence interval of p after T negative and no positive coin flips is

$$p \in \left[0, \frac{3}{T}\right]$$

Example After T = 1000 rejections the 95% confidence interval is $p \in [0, 0.003]$

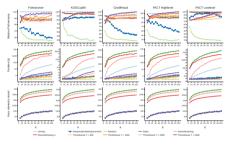
Rule of Three The $\alpha = 0.95$ - confidence interval of p after T negative and no positive coin flips is

$$p \in \left[0, \frac{3}{T}\right]$$


Example After T = 1000 rejections the 95% confidence interval is $p \in [0, 0.003]$

Algorithmic idea

- Start with largest available threshold and set t = 0
- If $\Delta_f(e|S) \ge v$ add e to S and set t = 0
- If $\Delta_f(e|S) < v$ increase t by one
- If $t \geq T$ lower threshold by rule-of-three and set t = 0



Experiments

Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1/\exp(1)$	O(K)	O(1)	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}(K)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}(K)$	O(K)	~	[4]
IndependentSetImprovement	1/4	$\mathcal{O}(K)$	$\mathcal{O}(1)$	~	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$O(\log K/\varepsilon)$	~	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$O(K/\varepsilon)$	$O(\log K/\varepsilon)$	~	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K \log K / \varepsilon)$	$O(\log K/\varepsilon)$	(√)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK \log K \log (1/\varepsilon))$	O([1/c] + c)	1	[18]
ThreeSieves	$(1 - \varepsilon)(1 - 1/\exp(1))$ with prob. $(1 - \alpha)^K$	O(K)	O(1)	~	this pape

(a) Theoretical Results

Α

(b) Experimental results

"Very Fast Streaming Submodular Function Maximization" @ ECML/PKDD 2021

